Europe Relaunch Ford Transit FT 190 2.5DI K04 Sturdy Garrett Turbo Price

10 Pieces
Europe Relaunch Ford Transit FT 190 2.5DI K04 Sturdy Garrett Turbo Price
Features Gallery Product Description Request A Quote
OE NO.: 914F6K682AG
Size: 28*24*28
Warranty: 12 Months
Type: Turbochargers
Car Make: Ford
Model Number: K04 53049880001
Product Name: K04 Sturdy Garrett Turbo Prices For Europe Remarketing
Company Type: Direct Manufacturer
Turbo Part No.: 53049880001
OEM: 914F6K682AG
Application1: Ford Transit FT 190 2.5DI
Turbo Model: K04
Engine: FT 190
Basic Infomation
Model Number: K04 53049880001, K04
Payment & Shipping Terms
Packaging Details: Standard Export Packing Carton,Wooden case,Pallet Neutral Packing,or Custom as your requests, 1 pieces per Carton/Wooden case 2 pieces per outer Cartons 60 pieces per pallets 1440 pieces per 20GP Container
Product Description

K04 Sturdy garrett turbo prices for europe remarketing

Product display








Ford Transit FT 190 2.5DI


FT 190

Company Information

Our advantages

Production flow

Show information


Q: What is the role of the journal bearing on turbocharger?

The journal bearing system in a turbo functions very similarly to the rod or crank bearings in an engine. These bearings require enough oil pressure to keep the components separated by a hydrodynamic film. If the oil pressure is too low, the metal components will come in contact causing premature wear and ultimately failure. If the oil pressure is too high, leakage may occur from the turbocharger seals.

Q : I want to make x horsepower, which turbo kit should I get? or Which turbo is best?

A: Select a turbocharger to achieve desired performance. Performance includes boost response, peak power and total area under the power curve. Further decision factors will include the intended application. The best turbo kit dictated by how well it meets your needs. Kits that bolt on without any modification are best if you don't have fabrication capabilities.

Q. What is causing my turbo to sound like a sewing machine's whistle?

A. The "sewing machine whistle" is a distinct cyclic noise cause by unstable compressor operating conditions known as compressor surge. This aerodynamic instability is the most noticeable during a rapid lift of the throttle, following operation at full boost.

Q. What is/causes Shaft Play?

A. Shaft play is caused by the bearings in the center section of the turbo wearing out over time. When a bearing is worn, shaft play, a side to side wiggling motion of the shaft occurs. This in turn causes the shaft to scrape against the inside of the turbo and often produces a high-pitched whine or whizzing noise. This is a potentially serious condition that can lead to internal damage or complete failure of the turbine wheel or the turbo itself

Q. How should I break-in a turbo?

A. A properly assembled and balanced turbo requires no specific break-in procedure. However, for new installations a close inspection is recommended to insure proper installation and function. Common problems are generally associated with leaks (oil, water, inlet or exhaust).

Q. How does a Waste gate work?

A. A Wastegate is simply a turbine bypass valve. It works by diverting some portion of the exhaust gas around, instead of through, the turbine. This limits the amount of power that the turbine can deliver to the compressor, thereby limiting the turbo speed and boost level that the compressor provides.

Q. How to work with a Wastegate?

- The Wastegate valve can be "internal" or "external". For internal Wastegates, the valve itself is integrated into the turbine housing and is opened by a turbo-mounted boost-referenced actuator.
-An external Wastegate is a self-contained valve and actuator unit that is completely separate from the turbocharger.
-In either case, the actuator is calibrated (or set electronically with an electronic boost controller) by internal spring pressure to begin opening the Wastegate valve at a predetermined boost level.
-When this boost level is reached, the valve will open and begin to bypass exhaust gas, preventing boost from increasing.

Q. What is compressor surge?

A. The surge region, located on the left-hand side of the compressor map (known as the surge line), is an area of flow instability typically caused by compressor inducer stall. The turbo should be sized so that the engine does not operate in the surge range. When turbochargers operate in surge for long periods of time, bearing failures may occur. When referencing a compressor map, the surge line is the line bordering the islands on their far left side. Compressor surge is when the air pressure after the compressor is actually higher than what the compressor itself can physically maintain. This condition causes the airflow in the compressor wheel to back up, build pressure, and sometimes stall. In cases of extreme surge, the thrust bearings of the turbo can be destroyed, and will sometimes even lead to mechanical failure of the compressor wheel itself. Common conditions that result in compressor surge on turbocharger gasoline engines are:
-A compressor bypass valve is not integrated into the intake plumbing between the compressor outlet and throttle body
-The outlet plumbing for the bypass valve is too small or restrictive
-The turbo is too big for the application

Q. How can I adjust the turbo boost?

A. Adjusting the boost is straightforward. However, it depends on the type of boost controller. For a standard Wastegates actuator, simply recalibrate the actuator to open (more or less) for a given pressure. Changing the length of the rod that attaches to the Wastegates lever accomplishes this adjustment. For mechanical boost control systems, adjustments may involve changing the setting on a regulator valve(s). For electronic boost control systems, adjustments may need to be made to the vehicle's engine management system. For an external Wastegates, adjusting the boost often requires turning the adjustment screw (when equipped) to increase/decrease spring load, changing Wastegates springs, or shimming Wastegates springs.


Q. What is Turbo Lag?

A. Turbo lag is the time delay of boost response after the throttle is opened when operating above the boost threshold engine speed. Turbo lag is determined by many factors, including turbo size relative to engine size, the state of tuning of the engine, the inertia of the turbo's rotating group, turbine efficiency, intake plumbing losses, exhaust backpressure, etc.

Q. What are the main tuning problems when dealing with Turbos?

A. Engine calibration - fueling and ignition timing. Under boost, it is crucial that there is no engine-killing detonation occurring within the cylinder. This is done by fine tuning the air/fuel ratio a bit rich to help cool the combustion gas, and by tuning the ignition advance curve to ensure that combustion chamber pressures stay below the level that causes unburned fuel to ignite ahead of the advancing flame front.

Q. How is boost measured? (Bar, mmHg, PSI) and How do you convert from one to another?

A. Boost is measured as the pressure that the turbo creates above atmospheric pressure. Normal Atmospheric Pressure (1 atm) = 14.7 psi = 760 mm Hg 1 Bar is not actually equal to 14.7 psi, but rather it is equal to 14.5 psi, = 0.9869 atm = 750.062 mm Hg

Q. What is the Exducer?

A. Looking at a compressor wheel, the exducer is the "major" diameter. For a turbine wheel, the exducer is the "minor" diameter. The exducer, in either case, is where flow exits the wheel. Compressor wheel exducer diameter is incorporated into Garrett GT-series nomenclature: The "60" in the GT2860RS for example, has a 60mm compressor wheel exducer diameter.

Q. What is the Inducer?

A. Looking at a compressor wheel, the inducer is the "minor" diameter. For a turbine wheel, the inducer is the "major" diameter. The inducer, in either case, is where flow enters the wheel.

Q. How fast will my car go with xyz?

A. This question cannot be answered as how fast any given car will go depends on the unique individual setup, road/weather conditions, and of course, the driver's skill.

Q. Are oil deposits indicative of impending turbo failure? There is blue/black smoke, is my turbo going bad?

A. Blue/black smoke can be caused by numerous conditions, and one of them could be a turbocharger worn past its useful service life. The following are potential reasons that blue/black smoke could occur:
* Clogged air filter element or obstructed air intake duct. This condition creates a vacuum due to high differential pressure resulting in oil drawn into the compressor and subsequently burned during engine combustion.
* Engine component problems; i.e. worn piston rings or liners, valve seals, fuel pump, fuel injectors, etc.
* Obstructed oil drain on turbocharger resulting in pressure building inside the center housing and forcing oil past the turbocharger seals
* Damaged turbocharger or turbocharger worn past its useful service life
* Black smoke is also sometimes indicative of too rich an air/fuel mixture.

Q. What should I look out for when buying a turbo?

A. 1. Condition of the turbine housing - inspect for cracks on the exterior and inside the inlet of the housing. If the housing has cracks then the housing needs to be replaced.
2. Condition of the turbine and compressor wheels - inspect for cracks and damaged blades. If either of the wheels are damaged then the wheel (s) need to be replaced and the center section balanced.
3. Condition of the bearings - spin the turbocharger shaft and check for roughness. If roughness is detected then the turbocharger needs to be disassembled and the internal components inspected and replaced if necessary.
4. The most important factor is to make sure the turbo is the proper one for your application. A properly matched turbo will provide better performance and more reliable operation. A properly matched turbo includes matched turbine and compressor wheel sizes and appropriate housings.

Q. Should my turbo/exhaust manifold glow red after driving?

A. Yes, the turbo/exhaust manifold can glow red under certain driving conditions. The exhaust gas temperature can reach over 1600F under high load operating conditions; i.e. towing, extended uphill driving, or extended high rpm/boost conditions.

Q. How do I adjust my compression ratio?

A. The easiest and most effective way to accomplish this is through the use of either higher/lower compression pistons, and/or using a head gasket of a different thickness.

Q. What compression ratio should I run with my turbo engine?

A. Allowable compression ratio depends on many factors, and there is no one right answer for every application. Generally, compression ratio should be set as high as feasible without encountering detonation at the maximum load condition. Setting the compression ratio too low will result in an engine that is a bit sluggish in off-boost operation. Setting it too high however, can lead to serious engine problems due to knock. Factors that influence the compression ratio can include: fuel anti-knock properties (octane rating), boost pressure, intake air temperature, combustion chamber design, ignition timing, and exhaust backpressure. Many modern engines have well designed combustion chambers that will allow modest boost levels with no change to compression ratio, assuming appropriate tuning. For higher power targets with more boost, compression ratios should be adjusted to compensate.

Q. What additional maintenance is required for the turbo?

A. Good, clean oil is extremely important to the turbocharger. It is best to change the oil and filter at least as often as the automobile manufacturer recommends. FRAM produces replacement oil filters for all levels of server use. Visit to select the right filter for your application! Turbo performance is sensitive to turbo inlet conditions. A clogged air filter can drastically affect the turbo inlet. Air filters should be inspected at every oil change and replaced at 12,000 to 15,000 mile intervals. Turbomaker produces replacement air filters including a new performance filter the Turbomaker AirHog.

NOTE: Never exceed the vehicle manufacturer's recommended filter change intervals.

Q. What is the purpose of an oil catch can?

A. An oil catch can's purpose is to catch oil blow-by gasses that can eventually create a carbon and oil sludge build-up in the intake and turbo.

Q. How can I remove and clean the oil condensation box/oil catch can?

A. The oil condensation box, or catch can, can be cleaned once it is removed with any cleaning solvent. Simply fill the box with a cleaner and slosh it around until oil deposits are gone. Removing the oil condensation box can be a challenge and varies by vehicle. NOTE: some vehicles are not equipped with an oil condensation box.

Q. Do I really need the cool down procedure on my turbo?

A. The need for a cool down procedure depends on how hard the turbo and engine is used, and whether or not the turbo is water-cooled. All Garrett turbochargers must pass a heat soak test and the introduction of water-cooling has virtually eliminated the need for a cool down procedure. Garrett is one of the few turbocharger manufactures that subjects their turbos to several OE qualification tests. When you buy a Garrett turbo you can be sure it's a reliable one!

Q. Should I run a Turbo Timer?

A. A turbo timer enables the engine to run at idle for a specified time after the ignition has been turned off. The purpose is to allow the turbo to cool down thus avoiding "coking" ("coking" is burned oil that deposits on surfaces and can lead to blocked passages). The need for a turbo timer depends on how hard the turbo and engine is used. Running at full speed and full load then immediately shutting down (heat soak) can be extremely hard on a turbo. Water-cooling of the turbocharger's center housing has essentially eliminated the need for turbo timers or extended idling periods.

Q. What is Knock/Detonation?

A. Knock is a condition caused by abnormal combustion of the air/fuel mixture and can result in damage to an engine. The three factors that result in engine knock are: 1) knock resistance characteristics (knock limit) of the engine, 2) ambient air conditions, and 3) octane rating of the fuel being used.
1. Since every engine is vastly different when it comes to knock resistance, there is no single answer to "how much." Design features such as combustion chamber shape, spark plug location, bore size and compression ratio affects the knock characteristics of an engine. In addition, engine calibration of fuel and spark plays an enormous role in dictating knock behavior.
2. For the turbocharger application, both ambient air conditions and engine inlet conditions affect maximum boost. Hot air and high cylinder pressure increases the tendency of an engine to knock. When an engine is boosted, the intake air temperature increases thus increasing the tendency to knock. Charge air cooling (e.g. an intercooler) addresses this concern by cooling the compressed air produced by the turbocharger.
3. The octane rating of fuel is a measure of a fuel's ability to resist knock. The octane rating for pump gas ranges from 85 to 94 while racing fuel would be well above 100. The higher the octane rating of the fuel, the more resistant it is to knock. Since knock can be damaging to an engine, it is important to use fuel of sufficient octane for your application. Generally speaking, the more boost you run, the higher the octane requirement.

Q. How much boost can I run on pump gas?

A. The primary limitation to maximum boost is engine knock. It is also not advisable to run the maximum amount of boost your car can handle on a daily driven basis as a precaution against if the boost spikes.

Q. Which boost controller should I get? (Manual or Electronic)

A. Boost controllers vary widely in performance, price, and functionality. For a comprehensive breakdown of some of the more popular options, see the July 2002 issue of Sport Compact Car Magazine.

Q. What is a boost controller?

A. A boost controller is a device that bleeds or blocks the boost pressure signal entering the Wastegates actuator. The idea is to keep the Wastegates closed to allow higher boost pressures than the actuator would otherwise allow. These can be simple mechanical or sophisticated electronic devices, with price tags to match.

Q. What other systems are affected by turbocharging? (Fuel, Oil, Cooling, Drivetrain, etc)

A. There are several factors that must be addressed when deciding to turbocharge a previously naturally aspirated engine, such as: Is the current fuel delivery system capable of providing increased, adequate amounts of fuel? Is the cooling/oiling system capable of handling the extra power and consequently, extra heat that is generated by the turbo? Is the clutch/transmission/drivetrain up to the task of handling the extra power? Etc

Q. The turbo gauges measures turbine speed, right?

A. The "turbo gauge", commonly called a boost gauge, does not measure turbine speed. It measures the intake manifold pressure. Under light loads the boost gauge will indicate a vacuum due to the turbocharger shaft not rotating fast enough to create positive pressure (boost). Once load (throttle position) increases, the boost gauge will indicate a positive pressure.

Recommended Products
Get in touch with us
Contact Person : ammy
Characters Remaining(20/3000)